Protecció passiva al foc i recomanacions per a una intervenció en Rehabilitació Energètica amb SATE

Protecció passiva al foc i recomanacions per a una intervenció en Rehabilitació Energètica amb SATE

Des de l’Oficina Tècnica de Rehabilitació de l’Arquitectura Tècnica de Catalunya, estem compromesos amb la qualitat en les intervencions de rehabilitació energètica que es duen a terme per part dels arquitectes tècnics. Per això considerem important que tingueu en compte els paràmetres següents

En primer lloc, és fonamental comprendre la classificació indicada pel Codi Tècnic de l’Edificació (CTE) referent a la reacció al foc dels materials utilitzats. Com es detalla en el CTE-DB-SI 2:

Figura 1. Font: Pàgina 18 CTE-DB-SI
Figura 2. Font: ISLA (Asociación de instaladores de Aislamiento)

Aquesta classificació està en consonància amb les Euroclases definides per la norma UNE-EN 13501 que classifica els materials segons els següents paràmetres:

  • Combustibilitat: Es refereix a la capacitat dels materials de suportar la combustió.
  • Emissió de fums: Fa referència a la quantitat i la toxicitat dels fums emesos durant una combustió.
  • Caiguda de gotes inflamables: : Indica la presència de gotes o partícules que poden inflamar-se i propagar el foc.

Per a una millor comprensió, volem subratllar els conceptes clau que defineixen aquesta classificació:

SímbolDefinició
∆TIncrement de temperatura.
∆mPèrdua de massa.
tfTemps de durada de la flama.
PCSPotencia calorífica superior.
FIGRAVelocitat de propagació del foc.

 

SímbolDefinició
THR600SEmissió total de calor en 600 seg.
LFSPropagació lateral de les flames.
SMOGRAVelocitat de propagació del fum.
TSP600SProducció total de fun en 600 seg.
FsPropagació de la flama.

Respecte de la combustió, els materials de construcció es poden classificar en:

Figura 3. Font: Web Mercor Tecresa: Empresa especialitzada en la protecció passiva contra incendis.

Quant a l’emissió de fum, la classificació té en compte la velocitat de propagació del fum (SMOGRA) i la producció total de fum en 10 minuts (TSP600s):

Figura 4. Font: Web Mercor Tecresa: Empresa especialitzada en la protecció passiva contra incendis.

Per últim, es defineix la caiguda de gotes inflamades, el mesurament de la qual es realitza en funció del temps en el qual les gotes cauen en un termini de 10 minuts.

És essencial comprendre que la qualificació global de reacció al foc s’aplica a la solució d’aïllament en el seu conjunt, no únicament al material aïllant individualment i s’ha realitzat a partir de mostres executades pel fabricant amb un control d’execució exhaustiu.

En el cas específic del poliestirè (sigui extruït o bé expandit), cal tenir present que, sense tractaments retardants, té una reacció al foc Euroclasse F, mentre que amb tractaments autoextingibles pot arribar a l’Euroclasse E.

Així, des de la Oficina Tècnica de Rehabilitació, us recomanem prendre les següents mesures addicionals:

  1. Instal·lació de tallafocs amb bandes de llana de roca.
  2. Ús de materials aïllants no combustibles en zones crítiques com ara llindes de finestres.
  3. Realitzar un control d’execució meticulós, incloent-hi els següents punts:
    • Preparació adequada de la base amb morter de regularització si és necessari i evitant cavitats.
    • Col·locació correcta dels panells aïllants, utilitzant el morter adequat segons el material base i col·locant suficient material de fixació química segons fabricant (cordó perimetral i 3 morterades o, a ser possible, tota la superfície del panell).
    • Instal·lació de les fixacions mecàniques adequades segons la base de suport, el gruix del material i el fabricant, tant en tipologia de fixacions com el número i millor distribució de les mateixes.
    • Aplicació precisa de les capes de morter segons fabricant (gruix de cada capa, tipus de morter, etc.)
    • Col·locació correcta de la malla segons fabricant amb els reforços i superposicions necessàries, instal·lant aquesta malla entre capa i capa del morter adequat.
    • Fer especial èmfasi als punts crítics com possibles canvis de material a la base o combinació de diferents aïllants (en cas de tallafocs)

Per a més detalls sobre prescripció i control d’execució del sistema SATE, t’adjuntem l’enllaç a la sessió corresponent realitzada per l’Oficina Tècnica de Rehabilitació.

La ponència específica del SATE comença al minut 6:40 i acaba al minut 1:24:30.

Conseqüències d’una instal·lació deficient de façanes ventilades. Per què és indispensable un estudi previ a la instal·lació?

Conseqüències d'una instal·lació deficient de façanes ventilades Per què és indispensable un estudi previ a la instal·lació?

Les façanes ventilades són un sistema constructiu que permet augmentar la durabilitat i eficiència energètica dels edificis aportant acabats duradors, de gran qualitat amb unes excel·lents prestacions tèrmiques i acústiques

Lògicament requereix d’un projecte arquitectònic, un estudi previ i una anàlisi de l’edifici previ realitzat per tècnics experts a més d’utilitzar uns materials de qualitat i d’una execució realitzada per empreses acreditades. Tots aquests elements són indispensables per a aconseguir un resultat perfecte. En cas contrari poden aparèixer problemes o patologies que no han d’atribuir-se al sistema constructiu en si mateix, sinó a una execució o a una planificació i concepció del projecte deficients.

Analitzar l’edifici, definir el projecte arquitectònic; claus de l’èxit:

Louvelia com a empresa especialitzada en façanes ventilades considera que un resultat perfecte comença en la mateixa concepció i estudi de l’edifici a rehabilitar amb façana ventilada. Un projecte amb una bona memòria, detalls i càlculs, facilita enormement el desenvolupament posterior de l’obra i eleva la qualitat dels resultats.

Com s’ha indicat és vital seleccionar adequadament els materials perquè en funció del tipus d’edifici, tipus d’estructura, requisits estètics, funcionals de muntatge i de manteniment entre altres paràmetres. Però abans d’això s’ha de fer un treball previ d’estudi i anàlisi tant de l’edifici com de la solució a executar.  

Figura 1. Assaig pull-out
  • Estudi de l’edifici. L’enginyeria de camp, com a complement als treballs en l’oficina tècnica, garanteix la correcta instal·lació. Ha de ser realitzada per tècnics amb experiència i qualificació i inclourà per exemple mesuraments amb escàner 3d (núvol de punts), assajos pull out o d’extracció, fotografies termogràfiques, estudis d’eficiència etc. que oferiran totes les dades d’estat de l’edifici.
  • Estudi de la solució. Amb aquestes dades es definirà el projecte tècnic seguint els criteris estètics definits per l’arquitectura mitjançant plans de façana, memòries constructives, unitats i descripcions detallades dels diferents elements. El projecte tècnic engloba el desenvolupament complet de les solucions constructives, plans de detall, càlcul dels diferents elements, a més de les especificacions dels materials, gruixos, fixacions, etc. En aquest sentit també es realitzaran;
    • Els càlculs estàtics necessaris per a la justificació dels diferents elements.
    • El disseny dels sistemes de fixació.
    • Els plans de fabricació i muntatge que definiran tant el sistema a utilitzar com el muntatge en obra.
    • La documentació tècnica necessària per al posterior llibre de l’edifici o l’obtenció dels segells, visats o certificats necessaris.

Problemes o patologies que poden aparèixer per una deficient concepció o execució:

Les façanes ventilades són una excel·lent solució constructiva. No s’ha d’atribuir errors de càlcul o execució al mateix sistema, sinó a la falta d’experiència, coneixement o intents d’estalviar costos dels encarregats d’executar un projecte. Si això succeeix, és possible que apareguin problemes com per exemple:

  • La fusteria auxiliar es desprèn. Això pot ocórrer per diverses causes però normalment està motivat per un sistema de fixació inadequat o insuficient és a dir que està dimensionat erròniament en mesures, nombre d’ancoratges o profunditat. Això és comú que succeeixi, per la necessitat d’estalviar costos en l’execució del projecte.
  • La fusteria auxiliar es deforma. Això ocorre perquè no s’han estimat de forma adequada les dilatacions dels perfils d’alumini que formen la subestructura de suport.
  • Despreniments de plaques. Normalment solen ocórrer perquè no s’ha estimat de manera adequada la capacitat portant dels paraments o elements sobre els quals es realitzaran les fixacions. Si s’han realitzat assajos pull out o proves d’extracció i tracció prèvies aquest extrem no hauria de succeir.
  • Les peces es tensen, no estan correctament alineades o fins i tot es trenquen. Això pot succeir perquè la fusteria es dilata en sentits oposats i és degut a un incorrecte disseny dels suports dels perfils sobre les mènsules.

Per a evitar aquests problemes i no haver de realitzar correccions a l’execució que augmenten els costos i les molèsties és vital acudir a l’enginyeria i l’assessorament tècnic. Louvelia ofereix a tots els agents (promotors, arquitectes, constructors, propietat, comunitats…) totes les eines per a l’èxit del projecte abans, durant i després de l’execució aconsegueix-nos el millor resultat del projecte de façana ventilada.

Vols contactar amb un especialista de façanes ventilades de l’empresa Louvelia? Clica aquí

La rehabilitació energètica, els fons europeus Next Generation i arquitectes tècnics a ‘Els Matins’ de TV3

La rehabilitació energètica, els fons europeus Next Generation i arquitectes tècnics a 'Els Matins' de TV3

‘Els Matins’ de TV3 entrevista al president executiu del Consell Català de l’Arquitectura Tècnica, Celestí Ventura, i emet el reportatge d’obres de rehabilitació executades per l’arquitecta tècnica Sara Bueno

El passat 12 de març, Celestí Ventura, president executiu del Consell de l’Arquitectura Tècnica de Catalunya, va ser convidat a ‘Els Matins’ de TV3 per fer un diagnòstic de la situació dels Fons Next Generation i mostrar una de les primeres obres executades amb ajuda dels FNG per la nostra companya Sara Bueno.

Per a veure la notícia completa clica el següent enllaç.

ZENIT Grup completa amb èxit la Rehabilitació Energètica subvencionada amb Fons Europeus amb la col·laboració de l’arquitecta tècnica Sara Bueno

ZENIT Grup completa amb èxit la Rehabilitació Energètica subvencionada amb Fons Europeus amb la col·laboració de l’arquitecta tècnica Sara Bueno

Acabada amb èxit la rehabilitació d’un edifici plurifamiliar de 34 habitatges a Cervera amb una subvenció de 369.004,14 € corresponent a l’assoliment del segon tram del programa 3 dels Fons Europeus NEXT GENERATION

El passat dia 18 de març del 2023 vàrem rebre resolució favorable per l’edifici plurifamiliar de 34 habitatges de Cervera.

Es tracta d’un edifici aïllat construït a l’any 1974. Son tres plantes semisoterrànies, planta baixa, vuit plantes superiors i planta sota coberta.

Per les característiques de l’edifici i la intenció de fer una rehabilitació energètica amb fons europeus, ZENIT Reformes i Rehabilitacions va proposar a la Comunitat de Propietaris enfocar-ho com una rehabilitació energètica integral de màxims i amb el model de REHABILITA SENSE DERRAMES d’EOSZENIT energy, una col·laboració entre ZENIT Reformes i Rehabilitacions i EOS energy (ESE).

Aquest model proposava un aïllament de façanes amb uns sistema SATE, impermeabilització i aïllament de coberta i un sistema de ACS i calefacció centralitzat combinant panells solars i aerotèrmia, a més de solucionar les diferents patologies detectades per l’estat de conservació de l’edifici, i la retirada d’elements de grans dimensions de fibrociment. En quant al finançament es proposava una quota energètica mensual per veí a partir de la finalització de l’obra on eren inclosos tots els costos de la rehabilitació més l’energia per produir la ACS i climatització per a tota la Comunitat.

La Comunitat de Propietaris va descartar incloure l’energia en el projecte i va optar únicament, referent a la millora de la seva eficiència energètica, l’execució de mesures passives, es a dir, només aïllar façanes i substituir la coberta de fibrociment per una de panell Sandwich.

Finalment, s’han realitzat les feines de reparació dels cantells de forjat, de pintura dels sostres de balcons, la reparació i sanejament de les façanes, la col·locació d’un sistema “SATE” (Sistema d’Aïllament Tèrmic Exterior) a les façanes principal i posterior, la substitució dels envans pluvials de les façanes laterals i una substitució de la coberta de plaques de fibrociment per panells sandwich.

Amb aquestes accions s’ha assolit una reducció de la demanda d’energia no renovable del 56,88% assolint el segon tram del programa 3 dels fons europeus NEXT GENERATION, corresponent a una subvenció del 65% de la despesa de l’actuació global.

Ha sigut un èxit per els veïns i per totes les parts que han intervingut en la rehabilitació.

Actualment EOSZENIT energy, està implicada en molts altres projectes de rehabilitacions energètiques, un d’ells, s’acaba d’iniciar a la població de Tàrrega, també de la mà de la seva col·laboradora, l’arquitecta tècnica gironina Sara Bueno, on en aquest cas s’assoleix el 3er tram, arribant a un 80% de subvenció i on la Comunitat de Propietaris “El Pati de Tàrrega” ja disposa d’una resolució de programa 3 amb la reserva de 1.167.540,00€ de subvenció.

El model d’Agent Rehabilitador d’EOSZENIT energy inclou tots els serveis necessaris per a una gestió integral de la rehabilitació. 

Incrementa durabilitat del formigó armat

Incrementa durabilitat del formigó armat

Grupo Puma presenta els productes que asseguren un increment de la durabilitat del formigó armat i ens demostra la seva eficàcia a través d’un estudi realitzat per l’Institut Eduardo Torroja

Avui dia, la importància que la rehabilitació té en el sector de la construcció és vital, no sols per les seves connotacions sostenibles, que és un dels motius de més pes, sinó pels esforços que des d’Europa s’estan fent per a fomentar aquest tipus d’actuacions en l’edificació. Per això, tenir les eines adequades per a intervenir en uns certs tipus d’estructures, pot marcar la diferència.

Com sabem, el formigó armat és un dels materials més utilitzats per a la construcció d’estructures al nostre país i, per a comprendre com podem ajudar a incrementar la seva vida útil, sigui des de la seva construcció o en una fase de rehabilitació, hem de conèixer els agents que més l’afecten:

  • Aigua: que en combinació amb l’oxigen produeix corrosió en l’acer. Si el formigó està fissurat, penetra ràpidament. A més, els cicles de gel i desglaç suposen un risc enfront del trencament.
  • Clorurs: que són presents en sals marines, surts del desglaç i productes per a piscines i dipòsits. Es propaguen a través de la porositat del formigó, generant picades en les barres.
  • Diòxid de Carboni: que produeix carbonatació en el mateix formigó, reduint el seu PH i provocant despassivació en les armadures.

Canvis en la normativa (Codi Estructural):

Tenint en compte tota aquesta casuística que trobem en el dia a dia de les edificacions de formigó armat, també s’han dut a terme canvis en les normatives d’aplicació.

És per això que, fa més de dos anys, el nostre Codi Estructural va introduir modificacions en les exigències sobre la vida útil d’aquesta mena d’estructures, requerint construccions més duradores i fomentant la rehabilitació d’aquestes.

També va revisar les classes d’exposició, per a adaptar-se millor als agents que afecten aquests materials i adaptant els recobriments recomanats per a protegir les estructures. És en aquest punt on trobem un nou factor, en els casos on el recobriment requerit resulta excessiu: l’aplicació de barreres de protecció.

Informe IETcc realitzat per l’Instituto Eduardo Torroja:

El nou Codi Estructural ha incorporat els mètodes de protecció superficial per al formigó armat que es recullen en l’UNE-EN 1504. Trobem diverses alternatives per a aconseguir aquesta finalitat i, en aquest article, GRUPO PUMA ens parla sobre les “membranes estanques de ciment” i el potencial que tenen per a incrementar la durabilitat del formigó.

Per a això, no contents amb els resultats més que contrastats en els molts casos pràctics que ja s’han dut a terme, van voler deixar constància de la gran eficàcia que els seus productes presenten per a aquesta mena d’intervencions.

Per a aquest estudi realitzat per l’Institut Eduardo Torroja, es van preparar una sèrie de provetes de formigó armat per a dos tipus d’assajos:

  • Assaig de carbonatació accelerada al 3% de CO₂: amb provetes de formigó armat sense protegir i provetes del mateix formigó armat protegit amb els productes MORCEM DRY F i MORCEM DRY SF PLUS.
  • Assaig de penetració de clorurs mitjançant assaig accelerat integral: amb provetes de formigó sense protegir i provetes del mateix formigó armat protegit amb MORCEM DRY SF PLUS.

Els resultats de l’assaig de carbonatació van donar com a resultat que la velocitat de carbonatació per al formigó amb morter MORCEM DRY SF PLUS havia disminuït en un 35% respecte al formigó de referència. Mentre que en el cas de les provetes recobertes amb morter MORCEM DRY F no s’havia observat cap carbonatació.

Figura 1. Fotografies realitzades després de l'exposició accelerada durant 140 dies al 3% de CO₂ trencament i ruixat amb fenolftaleïna

Per a l’assaig de penetració de clorurs, l’ús del morter MORCEM DRY SF PLUS va millorar el comportament respecte a l’inici de la corrosió per presència de clorurs en un 50%.

Figura 2. Evolució de Icorr en el període d'iniciació i propagació de la corrosió per a les provetes estudiades

A més d’això, es va veure un augment molt significatiu de la resistència elèctrica del conjunt amb morters de GRUP PUMA aplicats, la qual cosa comporta un augment de la durabilitat enfront de la corrosió per entrada d’ions clorur i carbonatació en general.

 

GRUPO PUMA, com a garantia de qualitat:

Amb aquesta informació, no hi ha dubte de l’efectivitat que els productes de GRUP PUMA tenen enfront d’aquesta mena d’intervencions i posen a la nostra disposició la seva Oficina Tècnica per a qualsevol consulta que pugui sorgir:

Email: oficinatecnica@grupopuma.com
Telèfon: 607203400
Web: www.grupopuma.com

Instal·lació de panells solars fotovoltaics en edificis plurifamiliars #NextGeneration

Instal·lació de panells solars fotovoltaics en edificis plurifamiliars #NextGeneration

En el context actual, caracteritzat per una creixent preocupació per la sostenibilitat i l’eficiència energètica, la implementació de sistemes actius com els panells solars fotovoltaics per a l’autoconsum en edificis plurifamiliars emergeix com una alternativa atractiva

El passat 23 de gener, en la sessió “IMPULS-AT. Rehabilitar amb mesures actives. Instal·lacions solars”, dedicada a fomentar la sostenibilitat ambiental i reduir la dependència de l’energia no renovable, l’OTR en col·laboració amb les empreses AUDAX Renovables i Kepton Solar va centrar la jornada en la rehabilitació en eficiència energètica d’edificis d’habitatges mitjançant instal·lacions solars fotovoltaiques.

Per tal d’assolir el segon i tercer nivell de subvenció #NextGeneration (arribant fins a un 80% del cost de l’actuació), cal implantar l’ús de mesures actives, com els panells solars fotovoltaics.

Com hem parlat en altres jornades, l’ús de panells solars fotovoltaics tindrà una incidència més directa en la reducció de consum d’energia primària no renovable en edificis residencials quan ens trobem amb instal·lacions de climatització i ACS que utilitzen com a font d’energia l’electricitat.

Analitzem cadascun dels punts tractats a la jornada, coincidents amb la cronologia que el procés d’instal·lació d’aquesta mesura requereix.

Escenari previ:

Abans de dur a terme qualsevol projecte d’instal·lació de panells solars fotovoltaics, és imprescindible avaluar diversos condicionants que poden influir en el resultat final. Això inclou a més del compliment de la normativa i els permisos necessaris, revisar algunes condicions prèvies:

    • L’anàlisi de l’espai disponible. Recordem que serà necessari deixar passadissos adequats per a la realització del manteniment al llarg de la vida útil de la instal·lació.
    • La capacitat estructural de la coberta de l’edifici. Encara que els panells solars fotovoltaics no suposen una gran sobrecàrrega, segons la seva inclinació caldrà tenir en compte l’empenta del vent i el tipus de fixació a la coberta, sobretot si instal·lem els panells mitjançant estructures llastrades, marquesines fixades a elements portants, etc.
    • L’estat de conservació de la coberta. La vida útil d’una instal·lació solar fotovoltaica s’estima entre 25 i 30 anys. Òbviament l’element sobre el qual es recolza haurà d’estar en condicions de durabilitat similars.
    • Els obstacles i les ombres. A més de l’orientació, caldrà analitzar la incidència de les ombres que es poden generar sobre la instal·lació causada pels diferents obstacles existents, com badalots, xemeneies, claraboies, ampits, edificis adjacents, etc.

Pel que fa al predimensionament, trobem al mercat diverses eines de simulació, com ara:

  1. PVGIS: : Aplicació gratuïta i accessible. Disposa de base de dades de radiació solar, tractament d’ombres, que ens poden ajudar als nostres càlculs. Fàcilment utilitzable.
  2. PVSYST: Permet l’anàlisi de dades meteorològiques, disseny adaptat als equips, tractament d’ombres i càlcul de pèrdues.
  3. HelioScope: Enfocat més a edificis d’ús comercial/industrial. Es tracta d’una aplicació especialitzada en sistemes fotovoltaics. Permet la realització de dissenys 3D i disposa d’una biblioteca de més de 45.000 components.
  4. Aurora Solar AI (Versió residencial):Permet realitzar modelats 3D a partir dels quals estudia la irradiació solar, optimitza la producció i realitza l’anàlisi econòmica i l’esquema elèctric. També, a partir de dades climàtiques de les bases de dades de Meteonorm o PVGIS, avalua l’ombrejat tant d’obstacles llunyans com d’objectes propers a la ubicació de la instal·lació.

Selecció de components i estudi d’alternatives:

Un aspecte clau en la planificació d’instal·lacions solars fotovoltaiques és la selecció dels components més adequats en funció de la tipologia i l’escenari de la coberta. Considerant:

  1. Mòduls fotovoltaics: Capturen la màxima quantitat possible de llum solar i la converteixen en electricitat de manera eficient. Es poden trobar al mercat models com N-PERT (bona eficiència, millora de captació de llum i optimització de captació d’electrons), HJT-Hetero·Juntion (bona eficiència, bon rendiment en condicions d’alta temperatura i llum difusa i fàcil producció), IBC-Contacte Posterior Integritat (major eficiència, reducció d’ombres, millor resistència a la intempèrie).
    Com a tècnics, hem de verificar punts interessants com la potència, la intensitat, el voltatge i l’eficiència depenent del projecte i les necessitats dels usuaris, així com la degradació.
  2. Inversors: La seva funció és transformar el corrent continu que rep dels panells fotovoltaics en corrent altern. Es recomana la combinació amb optimitzadors, que ajudaran a reduir les possibles pèrdues que es produeixen en la instal·lació. Una altra alternativa són els microinversors, que permeten una major flexibilitat en la instal·lació de panells solars, ja que cada microinversor va connectat a un panell realitzant una connexió en bateria, a diferència de l’inversor que es connecta en sèrie.
  3. Estructura: La conformen els elements que fixen els panells solars fotovoltaics. La seva funció és orientar i inclinar adequadament per a la seva màxima producció i estabilitat. Depenent d’aquestes característiques i del suport on es preveu la instal·lació, triarem l’estructura més adequada.
  4. Quadre de proteccions: Les parts més importants d’un quadre de protecció són els magnetotèrmics, les proteccions atmosfèriques i els fusibles.
    • Els magnetotèrmics són interruptors que permeten tancar la porta a l’energia quan els seus valors energètics varien dels que té preestablert. D’aquesta manera evitem tenir electrocucions, incendis, etc.
    • Les proteccions contra descàrregues atmosfèriques protegeixen la nostra instal·lació de totes les causes que poden afectar el nostre quadre de protecció.
    • Els fusibles ens protegiran contra les pujades imprevistes de tensió, d’aquesta manera s’evita que els nostres equips siguin danys, els nostres fusibles estaran preparats per tallar i evitar mals majors.
  5. Connectors
  6. Cablejat: Sobre aquest haurem de considerar la classificació de reacció al foc, secció mínima dels cables fotovoltaics, aïllament i coberta, i la longitud del cable. Entre les alternatives que podem considerar en col·locar una instal·lació fotovoltaica es troba la col·lectiva, ja sigui per xarxa interior o a través d’una xarxa de distribució, o individual a zones d’ús privat, incloent-hi els serveis com l’ascensor, l’enllumenat, la bomba de la piscina (si és necessària), les portes d’aparcament i la climatització.

Implantació y aspectes normatius

A l’hora d’implantar un sistema solar fotovoltaic a un edifici plurifamiliar, caldrà tenir en compte les següents normatives i regulacions:

Normativa estatal

  • Reial Decret 842/2002
  • Reial Decret 1699/2011
  • Reial Decret 900/2015
  • Reial Decret 413/2014

Normativa autonòmica

  • Decret 363/2004
  • Ordre 14/05/87
  • Resolució ECF/4548/2006
  • Decret 192/2023
  • Instrucció DGI 12/2023
  • Reial Decret llei 15/2018
  • Reial Decret 244/2019

Normativa seguretat i salut

  • Llei 31/1995 Prevenció riscos laborals
  • Reial Decret 485/1997 – Reial Decret 486/1997
  • RD 314/2006 Normes UNE
  • Norma UNE 157001/2002
  • UNE-EN 61173:98
  • EUROCODI 1: UNE-ENV
    1991- 1-4

Normativa autonòmica

  • Reglamento Delegado (UE) 2016/364

També cal tenir en compte que a instal·lacions de <10kW serà necessària la realització d’una Memòria Tècnica Descriptiva que contingui una descripció detallada de la instal·lació acompanyat d’un EBSS.

En canvi, a les instal·lacions de potència >10kW serà necessari la redacció d’un projecte tècnic on, a més de la descripció detallada de la instal·lació, hi constin plànols, càlculs justificatius del cablejat, càlcul de proteccions, materials i pressupost.

A més, és necessari obtenir l’aprovació dels veïns mitjançant l’Esquema Bàsic de Subministrament Solar (EBSS) o el Permís de Subministrament Solar (PSS), segons la legislació vigent.

Tramitació Administrativa i inicio del projecte

La tramitació administrativa prèvia implica la presentació de la documentació necessària per obtenir els permisos de construcció i connectar el sistema a la xarxa elèctrica. Considerant els següents:

  1. Permisos d’accés i connexió (Sol·licitud CAU)
  2. Permís d’accés i connexió
    • Baixa Tensió – Potencia ≤ 15 kW (no cal)
    • Baixa Tensió – Potencia > 15kW (obligatori)
    • Alta Tensió (obligatori)
  3. Avals o garanties
    • Potencia ≤ 100 kW (no cal)
    • Potencia > 100 kW (obligatori)
  4. Tramitació d’accés i connexió per aquelles instal·lacions que ho requereixen
    • Baixa Tensió – RD 1183/2020 – RD 1699/2011
    • Alta Tensió – RD 1183/2020 – RD 1955/2000 – RD 1699/2011
  5. Tramitació administrativa local
    • Comunicació prèvia d’obres
    • Llicència d’obres

La instal·lació

La mateixa instal·lació requereix un esquema ben planificat que tingui en compte la disposició dels panells, la connexió elèctrica i altres aspectes tècnics. Les accions han de seguir les pautes establertes, assegurant la correcta instal·lació dels components i la connexió a la xarxa elèctrica (figura 1).

Figura 1. Esquema de la instal·lació

Hem de tenir en compte les accions com els accessos a la coberta, el pas de cablejats i la ubicació dels mitjans de seguretat col·lectiva (línies de vida, espais d’actuació, proteccions perimetrals, xarxes de protecció de lluernaris).

Prevenció de riscos laborals

Durant la instal·lació, és essencial implementar mesures de prevenció de riscos laborals per garantir la seguretat dels treballadors. Això inclou la identificació i mitigació de possibles riscos, la provisió d’equips de protecció personal i la formació adequada sobre pràctiques segures de treball.

Les pràctiques inadequades a l’obra poden ser:

  1. Selecció de la ubicació.
  2. Disseny i planificació del sistema:
    • Predicció incorrecta del rendiment energètic.
    • Diferents orientacions o inclinacions en un mateix string.
    • Strings amb mòduls de diferent potència.
    • Dimensionament dels cables.
    • Protecció incorrecta dels circuits.
    • Equips monofàsics en instal·lació trifàsica o viceversa.
  3. Instal·lació física dels components:
    • Instal·ladors que no segueixen el disseny del sistema
    • Ventilació insuficient pels equips
    • Perforació de coberta sense mètodes de segellat adequats
    • Cablejat deficient i sense etiquetar
  4. Seguretat:
    • No seguir protocols de seguretat en treballs d’alçada.
    • No seguir els protocols d’actuació en treballs elèctrics.

Control de l’obra

El control de l’obra implica supervisar el progrés de la instal·lació i garantir que es segueixin les especificacions del projecte. S’ha de controlar el nombre de components, ubicació dels optimitzadors, numeració del cablejat de strings, ubicació dels optimitzadors/microinversors, a part dels documents administratius referents a l’obertura de centre de treball, el llibre de subcontractació, els certificats CE dels EPIs i eines, etc.

Després de la instal·lació

Després de finalitzar la instal·lació, cal realitzar proves de servei per verificar el funcionament adequat del sistema i garantir el seu rendiment òptim. Això inclou els voltatges dels strings de corrent continu (recomanable de 1000V CC), el funcionament dels LEDs de l’inversor, la comprovació del cablejat d’Ethernet, la intensitat de corrent altern (amb pinça amperimètrica), la resistència d’aïllament (amb un instrument multifunció) i la continuïtat del cablejat.

Manteniment

Un pla de manteniment adequat és fonamental per allargar la vida útil del sistema i maximitzar el seu rendiment. Això implica inspeccions regulars, neteja dels panells i la reparació o substitució de components defectuosos que puguin detectar-se.

Amb una planificació curada, una execució precisa i un manteniment adequat, aquests sistemes poden proporcionar beneficis significatius tant des d’un punt de vista ambiental com econòmic en la rehabilitació de l’eficiència energètica #NextGeneration.

Una transformació exemplar: Rehabilitació d’un edifici plurifamiliar a Cornellà de Llobregat amb el suport de les subvencions Next Generation

Una transformació exemplar: rehabilitació d'un edifici plurifamiliar a Cornellà de Llobregat amb el suport de les Subvencions Next Generation

Finalitza amb èxit la rehabilitació energètica d’un edifici de 104 habitatges de la mà de l’arquitecte tècnic Ramon Robles amb una subvenció del 40%

El 17 de gener passat, va tenir lloc un esdeveniment transcendent a Cornellà de Llobregat, on la ministra de Vivienda y Agenda Urbana, Isabel Rodríguez, acompanyada pel vicepresident executiu de l’Àrea Metropolitana de Barcelona (AMB) i alcalde de la localitat, Antoni Balmón, juntament amb el director del Consorci Metropolità de l’Habitatge (CMH), Jose Antonio Artímez, van presenciar els fruits d’un esforç col·lectiu: la inspecció de la primera obra de rehabilitació subvencionada sota el marc dels fons Next Generation. Aquest projecte, un exemple de col·laboració i innovació, va ser gestionat i executat per Ramón Robles Asín, un arquitecte tècnic col·legiat al Cateb, qui va liderar aquesta iniciativa amb habilitat i determinació.

L’edifici en qüestió, erigit l’any 1961 per Construcciones Españolas, representa una part integral del teixit urbà de Cornellà de Llobregat. Situat al barri de Santildefonso, aquest immoble de protecció oficial comprenia planta baixa i 13 plantes pis, albergant un total de 104 habitatges i 7 locals comercials. No obstant això, el pas del temps havia deixat empremtes evidents en la seva estructura, amb serioses deficiències a la seva verticalitat, especialment als pilars de les façanes, així com problemes crònics d’humitat per condensació que afectaven l’habitabilitat d’alguns habitatges.

La intervenció ha representat una oportunitat no només per a la seva millora estructural, sinó també per a la implementació de solucions innovadores en matèria d’eficiència energètica i sostenibilitat. Mitjançant el suport dels fons Next Generation, es va aconseguir una millora significativa en la reducció dels consum d’energia primària no renovable (EPnR) del 35%. S’ha otorgat una subvenció Next Generation de 363.028,78 euros, equivalent al 40% del pressupost d’obra subvencionable, fixat en 907.571,96 euros. Aquesta fita es va assolir gràcies a la implementació d’un sistema d’aïllament tèrmic per l’exterior (SATE) amb llana de roca d’Isover Saint-Gobain, una solució sostenible, ignífuga i reciclable, executada per l’empresa constructora Fachadas Zaren, SL.

El resultat d’aquesta intervenció va transcendir les expectatives inicials, amb beneficis palpables per als residents de l’edifici. Amb la instal·lació del SATE, els propietaris van experimentar una notable millora en el confort tèrmic, amb temperatures interiors que no baixaven dels 18 ºC durant les nits d’hivern, així com una reducció considerable en els nivells d’humitat, eliminant problemes previs de condensació que havien afectat la qualitat de vida dels habitants.

Més enllà dels avantatges evidents en termes de confort i sostenibilitat, aquesta intervenció va representar un punt d’inflexió en la preservació del patrimoni urbà i en la millora de la qualitat de vida dels ciutadans del barri. El compromís dels actors involucrats, des de les autoritats fins als professionals del sector, ha demostrat el valor de la col·laboració i la visió compartida en la construcció d’un futur més sostenible i habitable per a tothom.

Què és el vector energètic i vector per serveis? Com visualitzar aquestes dades en el Ce3X per a la posterior introducció al llibre de l’edifici? 

Què és el vector energètic i vector per serveis? Com visualitzar aquestes dades en el Ce3X per a la posterior introducció al Llibre de l’edifici?

Un dels requisits de la convocatòria alhora de fer el Llibre de l’edifici per a les subvencions Next Generation, és el Pla d’actuacions per a la renovació de l’edifici que permeti aconseguir el seu òptim nivell de millora, mitjançant una intervenció per fases prioritzada i valorada econòmicament

El Pla d’actuacions haurà d’incloure específicament mesures o conjunts de mesures que permetin aconseguir un estalvi en consum d’energia primària no renovable superior al 30% indicant estalvi estimat en cada cas. A més, es plantejaran mesures per a cadascun dels tres nivells establerts en els articles 15 i 34 del Reial decret 853/2021, de 5 d’octubre, per a la quantificació de les ajudes en els programes 1 i 3, reducció del consum d’energia primària entre el 30% i el 45%, entre el 45% i el 60%, i superior al 60%.

Per a això, cal tenir clars alguns conceptes que ens demana el propi Llibre de l’edifici, com són el vector energètic i els vector per serveis.

  • El vector energètic es refereix a totes aquelles substàncies que emmagatzemen i transporten energia, per exemple, electricitat, gas natural, hidrogen, etc.
  • El vector per serveis es refereix a l’energia destinada a calefacció, refrigeració, ACS, ventilació, control de la humitat i, si és el cas, il·luminació.

Al Certificat energètic, a l’informe complementari del Ce3X trobem valors d’indicadors de demanda i de consum d’energia representats per serveis o per vector energètic. D’aquí podem extreure dades del Consum d’energia final per serveis i del Consum d’energia final per vector energètic:

  • El consum d’energia final per serveis, és l’energia final [kwh/m2 any] que és necessari subministrar als sistemes pels serveis de calefacció, refrigeració, ventilació, ACS, control de la humitat i, en edificis d’ús diferent del residencial privat, d’il·luminació, de l’edifici, tenint en compte l’eficiència dels sistemes emprats.
  • El consum d’energia final per vector energètic, és la mateixa definició que per al consum d’energia final per serveis però expressat per tipus d’energia final [kwh/m2any]: electricitat, gas natural o gasoil-C, GLP o carbó entre d’altres.

Com podem visualitzar les dades del vector energètic en un modelatge Ce3x?

Aquesta dada la podem trobar en l’arxiu XML del Certificat d’eficiència energètica (etiqueta “EnergiaFinalVectores”), i es pot visualitzar amb el Visor XML del CTE, a la pestanya “Informe complementari” del visor en el següent enllaç.

Cliquem a “Añadir informe base de evaluación energética en formato XML o PDF+XML” (veure figura 1) i adjuntem el XML de l’arxiu de certificació energètica.

Figura 1

Un cop pujat l’arxiu, tenim 2 opcions de visualització: El Certificat d’eficiència energètica i l’ Informe complementari:

Veiem un exemple de l’ Informe complementari del certificat d’eficiència energètica (veure Figura 2)

Figura 2. Dades obtingudes a partir del visor XML del CTE

A la taula, destacat amb colors les dades de Consum d’energia final, de Consum d’Epnr, de Emissions i de Demanda, i a sota es representen els  quatre gràfics circulars per a cadascun dels indicadors associats amb els seus percentatges.

Prenent com a exemple els valors de Consum d’energia final dels requadre (fig.2), tenim:

  • Cenergia final Calefacció = 98,88 kWh/m2any
  • Cenergia final Refrigeració = 1,91 kWh/m2any
  • Cenergia final ACS = 51,84 kWh/m2any
  • Cenergia final Global = 152,63 kWh/m2any

Aquest valors representats per vector energètic també els trobem al gràfic circular a sota i a la esquerra (requadre blau de la figura 2):

  • Cenergia final Gas Natural =90,80 %
  • Cepnr Electricitat peninsular =9,20 %

Els valors representats per vector per servei també els trobem al gràfic circular a sota i a la dreta (requadre verd de la figura 2):

  • Cenergia final Calefacció = 64,80 %
  • Cenergia final Refrigeració = 1,20 %
  • Cenergia final ACS= 34,00 %

Com calcular la reducció estimada del consum d’energia final per vector energètic total i per servei?

El primer pas és realitzar el CEE de l’estat inicial i el CEE de cadascuna de les millores proposades per separat o agrupades sempre que responguin a la mateixa prestació (millora de la transmitància tèrmica de cobertes, millora de la transmitància tèrmica de façanes, etc.).

Les dades de reducció estimada del consum d’energia final per vector energètic total i per servei, s’obtenen comparant el consum d’energia final o consum d’energia primària no renovable (per vector energètic) de l’estat inicial de l’edifici amb l’estat de proposta de millores o conjunts de millores. És a dir, comparant el CEE de l’estat inicial de l’edifici amb el CEE de cadascuna de les millores o conjunt de millores proposades.

Es vol millorar la transmitància tèrmica en una façana incorporant un sistema SATE (sistema d’aïllament tèrmic per l’exterior).

Suposem que les dades obtingudes en el“Informecomplementari”Ce3x són les següents:

Figura 3. Informe complementari de l’estat inicial del CEE. Visor XML del CTE.
Figura 4. Informe complementari de la proposta de millora. Visor XML del CTE.

Calculem la diferència entre el consum d’energia final del CEE inicial i el CEE de la proposta per cadascun dels vectors per servei i energètic per obtenir el valor de reducció estimada del consum d’energia final:

Taula 1. Percentatge de reducció estimada del consum d’energia final per serveis.
Taula 2. Percentatge de reducció estimada del consum d’energia final per vector energètic.

Introducció de les dades al Llibre de l’Edifici digital:

Finalment introduïm els valors de % de reducció estimada obtinguts de consum d’energia final a les caselles corresponents del Llibre de l’Edifici digital, a l’apartat:

Potencial de millora i Pla d’Actuacions > Bloc II.2 Pla d’actuacions > II.2.1 Intervencions proposades > Reducció estimada del consum d’energia final (vector energètic i per servei) i utilització d’energies renovables:

Fonts extretes de Anna Martin, consultora energètica del Cateb.

Un altre exemple on trobar els valors del Consum d’Energia Final, per vector energètic, total i per serveis, és des del complement CMH-Next Generation del CE3X (Efinovatic), on posa la reducció del Consum d’energia final, després de l’aplicació del conjunt de mesures dels Nivells de millora:

Valors extrets de la Guia d’ús dels complements CMH-Next Generation

Amb el desig de les millors perspectives, des de l’OTR de l’Arquitectura Tècnica

Amb el desig de les millors perspectives, des de l'OTR de l'Arquitectura Tècnica

Benvolguts col·laboradors i amics de l’OTR de l’Arquitectura Tècnica,
Aquest 2023, ha estat un repte, però també un augment notable en les sol·licituds de subvencions per a projectes de rehabilitació energètica.

La missió de l’OTR de l’Arquitectura Tècnica és contribuir a un futur més sostenible, millorant l’eficiència energètica dels edificis. Amb aquest objectiu, us assegurem que seguirem treballant colze a colze amb tots vosaltres per aconseguir grans èxits en aquest àmbit.

I en aquesta època tan especial, us volem expressar la nostra gratitud per la confiança i suport continuat que ens heu donat, al llarg dels darrers mesos.

Continuant amb força i compromesos amb la missió de seguir proporcionant-vos el millor servei, us informem que la consultoria online no estarà disponible del 22 de desembre al 8 de gener.

Finalment, us desitgem que aquestes festes us portin molts encàrrecs, especialment aquells que donaran pas a nous projectes de rehabilitació energética.

 

– OTR de l’Arquitectura Tècnica

La Oficina Tècnica de Rehabilitació de l’Arquitectura Tècnica garanteix servei ininterromput durant les festes de Nadal

La Oficina Tècnica de Rehabilitació de l'Arquitectura Tècnica garanteix servei ininterromput durant les festes de Nadal

Per mantenir-nos al servei dels arquitectes tècnics/ques de la comunitat OTR, l’Oficina Tècnica de Rehabilitació de l’Arquitectura Tècnica (OTR-AT) continuarà oferint assistència i suport durant les properes vacances de Nadal.

L’oficina romandrà oberta, tancant únicament els dies estrictament festius per assegurar-se que els arquitectes tècnics/ques rebin el suport necessari en els seus projectes de rehabilitació energètica i en el procés de tramitació de les subvencions Next Generation.

L’horari d’atenció telefònica, a través del número 93 414 14 13, romandrà sense canvis durant aquest període especial, mantenint-se operatiu de 9h a 15h. Això permetrà als usuaris posar-se en contacte amb els professionals de l’OTR-AT per resoldre qualsevol dubte o rebre orientació sobre els seus projectes, així com continuar presentant sol·licituds per realitzar el corresponent Informe d’Idoneïtat Tècnica del programa 3 de l’Agència de l’Habitatge i l’Ajuntament de Barcelona.

La Consultoria Online, una oportunitat única per rebre assessorament a la tarda, es mantindrà amb normalitat tots els dimecres, de 17h a 18h. Aquest servei permet als clients accedir a recursos i consells experts sense haver de desplaçar-se físicament a l’oficina.

A més, l’OTR-AT us recorda que sempre podeu posar-vos en contacte mitjançant el grup de Telegram “OTR-Arquitectura Tècnica”. Aquest canal de comunicació proporciona una plataforma interactiva on la comunitat pot compartir idees, resoldre dubtes i mantenir-se actualitzada sobre les últimes novetats en l’àmbit de la rehabilitació i els Fons Next Generation.

L’equip de l’OTR-AT agraeix la col·laboració i participació de la comunitat, reafirmant el seu compromís amb la qualitat del servei i la satisfacció dels clients. L’OTR-AT vol ser un recurs accessible i confiable en tot moment, fins i tot durant les festes de Nadal.

Gràcies per la vostra confiança i bones festes des de l’Oficina Tècnica de Rehabilitació de l’Arquitectura Tècnica.

OTR.cat